Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets.

نویسندگان

  • Cátia Moreira
  • Maria J Ramos
  • Pedro A Fernandes
چکیده

BACKGROUND Glutamine synthetase (GS) is a crucial enzyme to the nitrogen cycle with great commercial and pharmaceutical value. Current inhibitors target the active site, affecting GS activity indiscriminately in all organisms. As the active site is located at the interface between two monomers, the protein-protein interface (PPI) of GSs gains a new role, by providing new targets for enzyme inhibition. Exploring GSs PPI could allow for the development of inhibitors selective for specific organisms. Here we map the PPI of three GSs-human (hsGS), maize (zmGS) and Mycobacterium tuberculosis (mtGS)-and unravel new drugable pockets. METHODS The PPI binding free energy coming from key residues on three GSs from different organisms were mapped by computational alanine scan mutagenesis, applying a multiple dielectric constant MM-PBSA methodology. The most relevant residues for binding are referred as hot-spots. Drugable pockets on GS were detected with the Fpocket software. RESULTS AND CONCLUSIONS A total of 23, 19 and 30 hot-spots were identified on hsGS, zmGS and mtGS PPI. Even possessing differences in the hot-spots, hsGS and zmGS PPI are overall very similar. On the other hand, mtGS PPI differs greatly from hsGS and zmGS PPI. A novel drugable pocket was detected on the mtGS PPI. It seems particularly promising for the development of selective anti-tuberculosis drugs given its location on a PPI region that is highly populated with hot-spots and is completely different from the hsGS and zmGS PPIs. Drugs targeting this pockets should be inactive on eukaryotic GS II enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase.

Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active ...

متن کامل

Glutamine auxotrophs of Bacillus subtilis that overproduce glutamine synthetase antigen have altered conserved amino acids in or near the active site.

A number of mutations within the Bacillus subtilis glutamine synthetase (GS) gene result in altered catalytic properties and overproduction of the GS antigen. The restriction fragments containing mutations from three such mutants were sequenced, and they all had amino acid changes in conserved residues found either within or near sequences contributing to the active site of the Salmonella typhi...

متن کامل

Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.

NAD+ is an essential co-enzyme for redox reactions and is consumed in lysine deacetylation and poly(ADP-ribosyl)ation. NAD+ synthetase catalyzes the final step in NAD+ synthesis in the well characterized de novo, salvage, and import pathways. It has been long known that eukaryotic NAD+ synthetases use glutamine to amidate nicotinic acid adenine dinucleotide while many purified prokaryotic NAD+ ...

متن کامل

The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition.

Phosphinothricin is a potent inhibitor of the enzyme glutamine synthetase (GS). The resolution of the native structure of GS from Salmonella typhimurium has been extended to 2.5 A resolution, and the improved model is used to determine the structure of phosphinothricin complexed to GS by difference Fourier methods. The structure suggests a noncovalent, dead-end mechanism of inhibition. Phosphin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2016